Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1625084

RESUMEN

Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.


Asunto(s)
Proteínas Anfibias/farmacología , Péptidos Antimicrobianos/farmacología , Antivirales/farmacología , Ranidae/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Virus ADN/efectos de los fármacos , Virus ARN/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Células Vero , Envoltura Viral/efectos de los fármacos , Ensayo de Placa Viral , Virosis/tratamiento farmacológico
2.
Sci Rep ; 11(1): 18851, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1434149

RESUMEN

In this pandemic SARS-CoV-2 crisis, any attempt to contain and eliminate the virus will also stop its spread and consequently decrease the risk of severe illness and death. While ozone treatment has been suggested as an effective disinfection process, no precise mechanism of action has been previously reported. This study aimed to further investigate the effect of ozone treatment on SARS-CoV-2. Therefore, virus collected from nasopharyngeal and oropharyngeal swab and sputum samples from symptomatic patients was exposed to ozone for different exposure times. The virus morphology and structure were monitored and analyzed through Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Atomic Absorption Spectroscopy (AAS), and ATR-FTIR. The obtained results showed that ozone treatment not only unsettles the virus morphology but also alters the virus proteins' structure and conformation through amino acid disturbance and Zn ion release from the virus non-structural proteins. These results could provide a clearer pathway for virus elimination and therapeutics preparation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Ozono/farmacología , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Estructura Secundaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , SARS-CoV-2/ultraestructura , Factores de Tiempo , Envoltura Viral/química , Envoltura Viral/efectos de los fármacos , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo , Zinc/química , Zinc/metabolismo
3.
J Hosp Infect ; 112: 37-41, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1198173

RESUMEN

This study investigated the potential of olanexidine gluconate as environmental disinfectant against enveloped viruses in the suspension test and three non-porous surface tests. In the suspension test, olanexidine gluconate showed immediate virucidal activity. In addition, non-porous surface tests demonstrated that, although the immediate effect of aqueous formulations was weak, the final virucidal efficacy outcompeted that of ethanol for disinfection. Furthermore, the effectiveness of olanexidine gluconate persisted even after drying on environmental surfaces. This study demonstrated the potential usage of olanexidine gluconate formulations as an environmental disinfectant in the infection control of enveloped viruses.


Asunto(s)
Biguanidas/farmacología , Desinfectantes/farmacología , Glucuronatos/farmacología , Control de Infecciones/métodos , Envoltura Viral/efectos de los fármacos , Virus/efectos de los fármacos , Biguanidas/química , Línea Celular , Desinfectantes/química , Desinfección/normas , Microbiología Ambiental , Glucuronatos/química , Humanos , Pruebas de Sensibilidad Microbiana , Virus/clasificación
4.
J Phys Chem Lett ; 12(5): 1384-1389, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1052086

RESUMEN

One of the key parameters required to identify effective drugs is membrane permeability, as a compound intended for an intracellular target with poor permeability will have low efficacy. In this paper, we leverage a computational approach recently developed by our group to study the interactions between nanoparticles and mammalian membranes to study the time of entry of a variety of drugs into the viral envelope of coronavirus as well as cellular organelles. Using a combination of all-atoms molecular dynamics simulations and statistical analysis, we consider both drug characteristics and membrane properties to determine the behavior of 79 drugs and their interactions with the viral envelope, composed of the membrane and spike protein, as well as five other membranes that correspond to various mammalian compartments (lysosome, plasma, Golgi, mitochondrial, and endoplasmic reticulum membranes). The results highlight important trends that can be exploited for drug design, from the relatively high permeability of the viral envelope and the effect of transmembrane proteins, to the differences in permeability between organelles. When compared with bioavailability data present in the literature, the model results suggest a negative correlation between time of permeation and bioavailability of promising drugs. The method is general and flexible and can be employed for a variety of molecules, from small drugs to small nanoparticles, as well to a variety of biological membranes. Overall, the results indicate that this model can contribute to the identification of successful drugs as it predicts the ability of compounds to reach both intended and unintended intracellular targets.


Asunto(s)
Antivirales/metabolismo , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Membrana Dobles de Lípidos/química , Glicoproteínas de Membrana/química , Modelos Biológicos , Simulación de Dinámica Molecular , Nanopartículas/química , Tamaño de la Partícula , Permeabilidad , Unión Proteica , Solubilidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Envoltura Viral/efectos de los fármacos
5.
Bioorg Chem ; 107: 104619, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1009321

RESUMEN

Severe emerging and re-emerging viral infections such as Lassa fever, Avian influenza (AI), and COVID-19 caused by SARS-CoV-2 urgently call for new strategies for the development of broad-spectrum antivirals targeting conserved components in the virus life cycle. Viral lipids are essential components, and viral-cell membrane fusion is the required entry step for most unrelated enveloped viruses. In this paper, we identified a porphyrin derivative of protoporphyrin IX (PPIX) that showed broad antiviral activities in vitro against a panel of enveloped pathogenic viruses including Lassa virus (LASV), Machupo virus (MACV), and SARS-CoV-2 as well as various subtypes of influenza A viral strains with IC50 values ranging from 0.91 ± 0.25 µM to 1.88 ± 0.34 µM. A mechanistic study using influenza A/Puerto Rico/8/34 (H1N1) as a testing strain showed that PPIX inhibits the infection in the early stage of virus entry through biophysically interacting with the hydrophobic lipids of enveloped virions, thereby inhibiting the entry of enveloped viruses into host cells. In addition, the preliminary antiviral activities of PPIX were further assessed by testing mice infected with the influenza A/Puerto Rico/8/34 (H1N1) virus. The results showed that compared with the control group without drug treatment, the survival rate and mean survival time of the mice treated with PPIX were apparently prolonged. These data encourage us to conduct further investigations using PPIX as a lead compound for the rational design of lipid-targeting antivirals for the treatment of infection with enveloped viruses.


Asunto(s)
Antivirales/uso terapéutico , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Protoporfirinas/uso terapéutico , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Antivirales/farmacología , Arenavirus del Nuevo Mundo/efectos de los fármacos , Chlorocebus aethiops , Perros , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Virus Lassa/efectos de los fármacos , Células de Riñón Canino Madin Darby , Masculino , Lípidos de la Membrana/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Protoporfirinas/síntesis química , Protoporfirinas/metabolismo , Protoporfirinas/farmacología , SARS-CoV-2/efectos de los fármacos , Células Vero , Envoltura Viral/efectos de los fármacos
6.
J Phys Chem B ; 124(46): 10374-10385, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: covidwho-919399

RESUMEN

Atomistic molecular dynamics simulations have been carried out with a view to investigating the stability of the SARS-CoV-2 exterior membrane with respect to two common disinfectants, namely, aqueous solutions of ethanol and n-propanol. We used dipalmitoylphosphatidylcholine (DPPC) as a model membrane material and did simulations on both gel and liquid crystalline phases of membrane surrounded by aqueous solutions of varying alcohol concentrations (up to 17.5 mol %). While a moderate effect of alcohol on the gel phase of membrane is observed, its liquid crystalline phase is shown to be influenced dramatically by either alcohol. Our results show that aqueous solutions of only 5 and 10 mol % alcohol already have significant weakening effects on the membrane. The effects of n-propanol are always stronger than those of ethanol. The membrane changes its structure, when exposed to disinfectant solutions; uptake of alcohol causes it to swell laterally but to shrink vertically. At the same time, the orientational order of lipid tails decreases significantly. Metadynamics and grand-canonical ensemble simulations were done to calculate the free-energy profiles for permeation of alcohol and alcohol/water solubility in the DPPC. We found that the free-energy barrier to permeation of the DPPC liquid crystalline phase by all permeants is significantly lowered by alcohol uptake. At a disinfectant concentration of 10 mol %, it becomes insignificant enough to allow almost free passage of the disinfectant to the inside of the virus to cause damage there. It should be noted that the disinfectant also causes the barrier for water permeation to drop. Furthermore, the shrinking of the membrane thickness shortens the gap needed to be crossed by penetrants from outside the virus into its core. The lateral swelling also increases the average distance between head groups, which is a secondary barrier to membrane penetration, and hence further increases the penetration by disinfectants. At alcohol concentrations in the disinfectant solution above 15 mol %, we reliably observe disintegration of the DPPC membrane in its liquid crystalline phase.


Asunto(s)
1-Propanol/química , Desinfectantes/química , Etanol/química , Membrana Dobles de Lípidos/química , Fluidez de la Membrana/efectos de los fármacos , Permeabilidad/efectos de los fármacos , 1,2-Dipalmitoilfosfatidilcolina/química , Simulación de Dinámica Molecular , SARS-CoV-2/química , Envoltura Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA